Cops and Robbers from a distance
نویسندگان
چکیده
Cops and Robbers is a pursuit and evasion game played on graphs that has received much attention. We consider an extension of Cops and Robbers, distance k Cops and Robbers, where the cops win if at least one of them is of distance at most k from the robber in G. The cop number of a graph G is the minimum number of cops needed to capture the robber in G. The distance k analogue of the cop number, written ck(G), equals the minimum number of cops needed to win at a given distance k. We study the parameter ck from algorithmic, structural, and probabilistic perspectives. We supply a classification result for graphs with bounded ck(G) values and develop an O(n) algorithm for determining if ck(G) ≤ s for s fixed. We prove that if s is not fixed, then computing ck(G) is NP-hard. Upper and lower bounds are found for ck(G) in terms of the order of G. We prove that (n k )1/2+o(1) ≤ ck(n) = O n log ( 2n k+1 ) log(k + 2) k + 1 , where ck(n) is the maximum of ck(G) over all n-vertex connected graphs. The parameter ck(G) is investigated asymptotically in random graphs G(n, p) for a wide range of p = p(n). For each k ≥ 0, it is shown that ck(G) as a function of the average degree d(n) = pn forms an intriguing zigzag shape.
منابع مشابه
Chasing robbers on percolated random geometric graphs
In this paper, we study the vertex pursuit game of Cops and Robbers, in which cops try to capture a robber on the vertices of a graph. The minimum number of cops required to win on a given graph G is called the cop number of G. We focus on G(n, r, p), a percolated random geometric graph in which n vertices are chosen uniformly at random and independently from [0, 1]. Two vertices are adjacent w...
متن کاملThe game of Overprescribed Cops and Robbers played on graphs
We consider the effect on the length of the game of Cops and Robbers when more cops are added to the game play. In Overprescribed Cops and Robbers, as more cops are added, the capture time (the minimum length of the game assuming optimal play) monotonically decreases. We give the full range of capture times for any number of cops on trees, and classify the capture time for an asymptotic number ...
متن کاملLazy Cops and Robbers on Hypercubes
We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. We investigate the analogue of the cop number for this game, which we call the lazy cop number. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the lazy cop number of the hypercube. By coupling th...
متن کاملLazy Cops and Robbers Played on Random Graphs and Graphs on Surfaces
We consider a variant of the game of Cops and Robbers, called Lazy Cops and Robbers, where at most one cop can move in any round. The lazy cop number is the analogue of the usual cop number for this game. Lazy Cops and Robbers was recently introduced by Offner and Ojakian, who provided asymptotic upper and lower bounds on the analogue of the cop number of the hypercube. By investigating expansi...
متن کاملThe Cop Number of the One-Cop-Moves Game on Planar Graphs
Cops and robbers is a vertex-pursuit game played on graphs. In the classical cops-and-robbers game, a set of cops and a robber occupy the vertices of the graph and move alternately along the graph’s edges with perfect information about each other’s positions. If a cop eventually occupies the same vertex as the robber, then the cops win; the robber wins if she can indefinitely evade capture. Aig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Theor. Comput. Sci.
دوره 411 شماره
صفحات -
تاریخ انتشار 2010